SwingBot: Learning Physical Features from In-hand Tactile Exploration
for Dynamic Swing-up Manipulation
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Abstract— Several robot manipulation tasks are extremely
sensitive to variations of the physical properties of the ma-
nipulated objects. One such task is manipulating objects by
using gravity or arm accelerations, increasing the importance
of mass, center of mass, and friction information. We present
SwingBot, a robot that is able to learn the physical features
of an held object through tactile exploration. Two exploration
actions (tilting and shaking) provide the tactile information
used to create a physical feature embedding space. With this
embedding, SwingBot is able to predict the swing angle achieved
by a robot performing dynamic swing-up manipulations on a
previously unseen object. Using these predictions, it is able to
search for the optimal control parameters for a desired swing-
up angle. We show that with the learned physical features
our end-to-end self-supervised learning pipeline is able to
substantially improve the accuracy of swinging up unseen
objects. We also show that objects with similar dynamics are
closer to each other on the embedding space and that the
embedding can be disentangled into values of specific physical
properties.

I. INTRODUCTION

As applications for robotic manipulation shift from in-
dustrial to service tasks, the need for robots to deduce the
physical properties of objects increases. To cope with the
diversity of objects and tasks in the real world, robots require
models that can quickly infer the physical properties of
objects, with as few interactions as possible and without
explicit supervision. These models could allow the robot to
perform more dynamic interactions with its environment or
with held objects in the cases where in-hand manipulation is
desired. Vision based methods for learning physical object
representations through dynamic interaction have shown
some promise towards achieving such models [1]. However,
vision based approaches are still restricted to interactions in
structured environments and do not address the limitations
of deploying deep learning based vision systems into the
real-world scenarios.

Tactile sensing can be seen as an attractive alternative to
vision. In particular, vision-based tactile sensors provide direct
observations of the deformation caused by contact with an
object [2]. Considering the local nature of these observations,
the influence of environmental noise is negligible, making
methods developed with this modality potentially more
transferable to real-world environments. Additionally, vision-
based tactile sensors are able to accurately estimate the normal
and shear forces being applied to the sensing surface. So
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Fig. 1: SwingBot. We develop a learning-based in-hand physical
feature exploration method with a GelSight tactile sensor, which
assists the robot to perform accurate dynamic swing-up manipulation.

rather than designing an environment to make the influences
of external forces easily observable with vision, it is preferable
to have very accurate sensing directly at the interaction points,
i.e, performing interactions with a sensorized hand. Therefore,
tactile sensing seems like an appropriate modality for learning
object physical representations. However, it is not without
its limitations as these sensors are soft, making the modeling
and measuring of the properties of the sensor itself more
complex.

In this work we develop a method to infer the physical
parameters of an unknown object through in-hand exploration.
To do this, we use the information provided by a GelSight
sensor [2] to learn a low-dimensional embedding of the
object’s properties as well as the properties of the GelSight
itself. We learn the embedding in a self-supervised fashion
and use it to optimize the performance of a dynamic in-hand
manipulation task. In particular we have the robot swing-up
a set of unknown objects to a desired pose in-hand. We find
the optimal control parameters for the swing-up task with
the aid of a swing-up angle predictor that uses our learned
embedding as input. We also prove the portability of this
embedding to new tasks by showing that we can use it to
directly regress to object parameters such as mass, center of
mass, moment of inertia and friction.

Our approach consists of two main components: (1) an
information fusion model and (2) a forward dynamics model.
SwingBot starts by performing two in-hand exploration
actions, tilting and shaking. As each of these actions provides
different information about the physical parameters of the
object, a fusion model takes the information from both
actions in order to learn a joint physical feature embedding
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Fig. 2: Challenges. Swing-up is a highly-dynamic process, where changing objects’ physical properties would have a big impact on the
final swing-up angle. Here we show, with the same control parameters, that the dynamics vary when the objects vary: same mass but
different center of mass (a)(b); different mass (b)(c); and different friction coefficient (c)(d).

of the object in-hand. Once the embedding is learned, a
forward dynamics model uses the embedding and the control
parameters that generate the swing-up motion in order to
predict the final swing-up angle.

The main contribution of this work is to demonstrate that
the robot is able to learn a low-dimensional embedding of the
physical features of a held object from dense tactile feedback
acquired through a small number of active exploration actions.
The learned embedding allows the robot to accurately and
consistently perform a swing-up task on a set of objects, with
an overall 17.2 degree error on unseen objects. Furthermore,
our experiments show that the fusion network can accurately
estimate physical parameters of unknown objects once the
features are disentangled.

II. RELATED WORK

Robotic manipulation has been dominated by the paradigm
of kinematic manipulation, and for good reasons. In reducing
the effects of task dynamics, it is easier to ensure that a robot
can perform its task consistently without error. However, this
has limited the application of robotics to a set of simple
tasks like pick-and-place. As robotic manipulation becomes
more ubiquitous, the need for robots that can perform more
tasks becomes important. One path forward is to increase the
mechanical complexity of robots by using dexterous hands.
However this also comes with a cost in terms of control and
design complexity. Alternatively, [3] illustrates that simple
mechanical designs can achieve more than pick-and-place if
we reconsider the task dynamics.

Inspired by [3], researchers have been successful in devel-
oping methods that exploit the task dynamics for performing
actions like dynamically sliding an object in-hand [4], tossing
an object into the air to regrasp it [5], and swinging up an
object to a desired pose [6]. However, these methods require
experts to first determine which parameters of the system are
important for the task, a model of the dynamics, and accurate
measures of the physical properties of importance for each
object used. Therefore, these methods are hard to deploy in
real-world environments.

To alleviate the need for careful modelling and accurate
measurements, researchers have been working on an alterna-
tive method known as intuitive physics [7], [8]. Intuitive

physics allows a robot to estimate the parameters of an
object via learning based approaches and interaction. In [7],
[9], [1], [10], direct regression over the physical parameters
of an object, like mass and friction, was performed for
tasks like sliding an object and predicting the stability of a
tower of stacking blocks. However, knowing exactly which
physical parameters are needed for a task or directly observing
those parameters from feedback may be difficult. So, several
methods [8], [11], [12], [13] instead indirectly estimate
object parameters by learning an object embedding in a self-
supervised way for tasks like pushing and tossing an object
to a desired pose. However, these methods still require a
structured environment. In particular, [1] used a set of ramps
to make the result of a dynamic interaction easily observable
with vision.

Rather then using the environment we can instead use
in-hand manipulation to extract properties about the object.
In fact, [14] suggest that humans perform a set of exploratory
procedures to extract object properties like friction, mass
and center of mass. While, it is possible to monitor in-
hand interactions with vision, [15] shows tactile sensing
outperforms vision alone when doing tasks that require
feedback about contact interactions like determining if a
grasp is successful. This work along with other works that
explore tactile sensing for tasks like slip control [16], [17],
[18], regrasping [19], [20], [21], contour following [22], [23],
[24], and ball manipulation [25] focus mainly on static or
quasi-static interactions. The object’s physical properties have
less of an influence on the performance of a controller for
static or quasi-static interactions then they would have in more
dynamic manipulation tasks like swing up. As a result, none
of aforementioned works that explore tactile sensing estimate
the physical parameters of the object. In contrast, we focus on
learning physical representations from simple in-hand tactile
exploration, and show that such representations are useful for
manipulation tasks that requires physical knowledge.

III. METHOD

The goal of SwingBot is to enable the robot to swing
up an unknown object to a desired pose (0° ~ 200°) after
performing a single exploratory action. In [6], the authors
suggest the robot must first build a dynamic model of the
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Fig. 3: Overview of the architecture. The robot takes several steps to acquire and use the physical features of the held object: (1) Tilting
the object at 20°and 45°. The corresponding marker information is encoded by a network with CNN and MLP into a 40-dimensional
embedding. (2) Shaking the object. The sequence of marker information is processed by a RNN network into a 40-dimensional embedding.
(3) A fusion model concatenates the embedding from both actions and outputs a fused physical feature embedding. (4) A prediction model
takes the physical embedding and control paramaters as input and outputs a prediction of the final swing-up angle. During training, the
whole pipeline is trained in an end-to-end fashion using the final angle for self-supervision. During inference, a set of control parameters
are uniformly sampled. The action with the prediction result closest to the goal is selected to perform the swing-up.

task, and once the robot has a notion of what this model is,
it must then extract which physical parameters of an object
are keys to completing the task. Thus, when a novel object is
introduced, the system only needs to extract those parameters
to tune the model. Therefore, we create a method to estimate
the desired control parameters of a hand coded control policy
by performing a set of hand coded exploration actions. To
accomplish this we use GelSight, a vision based tactile sensor,
to monitor the state of the object while performing in-hand
exploration of the object in the form of shaking and tilting.
These exploratory procedures extract different type of object
information, and as a result we create a method to fuse the
information from both procedures into a joint physical feature
embedding of the object. We then create a forward dynamics
model that uses the embedding to infer which action will
result in our desired object pose.

A. GelSight

While previous methods exploring physical object property
estimation monitored the result of a dynamic interaction with
vision [1], vision as a modality has its limitations for this
task. Beyond errors in state estimation due to environmental
noise, it lacks the ability to perceive the forces being applied
to an object. Hence, if you were performing an exploratory
action like tilting an object in-hand to estimate it’s mass, its
change in position as you tilt the object would be almost
imperceptible, as seen in Fig 4. Therefore, we rely on tactile
sensing, the GelSight sensor [2] in particular. The GelSight
enables us to have high resolution information about the
contact surface between the object and the finger. This enables
us to have information about local geometry of the object
for pose estimation. Beyond that the sensor used in this
experiment is equipped with markers along the sensing surface

which provides information about tangential displacements,
giving us rich information about the sheer forces and torques
being applied to the sensing surface.

B. Information Fusion for Multiple Exploration Actions

While the use of a GelSight has its advantages in providing
rich information about the contact dynamics between the
finger and the object, it also comes with its limitations. The
material used to make the GelSight (Polydimethylsiloxane)
exhibit nonlinear mechanical properties that are difficult to
measure and model. So, while previous approaches [1] were
able to directly regress over physical properties like mass
and friction and perform a forward simulation, we take a
different approach. Rather than regressing over the physical
parameters, we hand design a set of exploratory procedures
that clearly encode physical properties of the object like
fiction and mass, and then let the model create its own low-
dimensional embedding of the object using self-supervised
learning in hopes it also encodes the gel’s dynamics.

In designing these exploration actions, we had to determine
what set of parameters to search for. In [6], a dynamic analysis
of the swing-up task was performed, concluding that the
surface friction, mass of the object, center of mass and
moment of inertia play roles in swing-up dynamics. Since
we use a parallel gripper for this task we are limited to
what we can choose in terms of actions. We determined that
shaking and tilting the object in hand were the only methods
that can be performed reliably. After some experimentation
with these behaviors, we determined that tilting was able
to give us information about mass, center of mass and the
moment of inertia, while shaking is able to inform us of
the friction of the object as show in Fig. 4.

In-hand Object Tilting: Using tactile feedback and tilting
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Fig. 4: Exploration actions and GelSight Signals. The robot
executes two in-hand explorations, tilting and shaking, to acquire
tactile observations of the object. When tilting, different force and
torque distributions are generated by the objects weight can be
observed. When shaking, different frictions and vibrations can be
observed from temporal sequences of tactile signals.

the object in-hand to different angles provides us information
about the mass and center of mass, as showed in Fig. 4.
We observed that as the object was tilted to a low angle
we could obtain its mass, while tilting the object to a larger
angle gave us information about the torque being applied
to the sensor. Combining mass in torque estimates we were
then able to infer the center of mass. Therefore, after the
robot grasped the object and held it in-hand, it is then able
to tilt the object into 20 and 45 degree poses. The marker
feedback (W x H x 2; W = 14, H = 12 in our experiments)
from the GelSight tactile sensor at each angle is recorded and
used as the input information to the model. Then, the model
concatenates the marker information of three angles into a 4
dimensional inputs, followed by a CNN network with kernel
size of 5 x 5, 3 X 3 and 2 x 2. The last layer of the network
is a fully-connected layer which outputs a 40-dimensional
feature as the fusion of the learned physical proprieties for
tilting.

In-hand Object Shaking: Shaking in turn contains infor-
mation about the friction, and potentially for the moment
of inertia. After holding the object in a 0-degree pose,
the robot first loosens the gripper force to enable a small
range of rotation flexibility (Fig. 4). Then, the robot starts

Fig. 5: Template objects. The template objects consist of three
components: handle, rack and weights. Different components can

be assembled and replaced easily, which creates a variety of objects
with different physical properties.

a quick switch between forward and backward rotations (5
degrees in our experiments) on the joint of the end effector.
During this process, we record a sequence of the tactile
marker displacements (60-70 frames per trial). Each frame
is then processed into a 40-dimensional embedding with the
CNN network, which has the same architecture as the one
introduced above. Since we want to extract the inter-frame
information of the shaking action, we use a long-short term
memory (LSTM) [26], which starts with zero hidden states
and iteratively processes all the embeddings of each frame.
The last layer will concatenate the hidden states & and cell
state ¢ into a 80-dimensional embedding as the fusion of the
learned physical properties for shaking.

C. Prediction Model for Forward Dynamics

To perform the swing-up action we use an impulse-
momentum method [27]. The first stage of the swing-up
action begins by having the robot build up the object’s linear
and rotation momentum by simultaneously accelerating the
object upwards and rotating the wrist in the direction of
the swing while holding the object firmly. After a short
period the robot creates an impulse, by quickly accelerating
the object downwards and rotating the wrist in the opposite
direction of the swing. At the moment of the impulse the
robot loosens the gripper, so that the inertia of the object can
overcome the forces of rotational friction and gravity. Thus,
the object freely rotates in-hand. After some time, the gripper
is tightened to stop the motion of the object at some pose.
We use current based position control for the gripper so that
the robot automatically decides the gripper width for holding
different objects tightly with the same motor torque. When
designing the action, the linear and rotational movements
of the arm are predefined as well as the timing of gripper
tightening, but the robot selects how much the gripper loosens
at the impulse. This allows the robot to control the objects
deceleration so that it can precisely control the object’s end
pose.

In order to use the learned physical features to find
the control parameter, the gripper width, for the swing-up
manipulation, we propose a forward dynamics model that
takes the fused physical features and the action as inputs and



outputs a prediction of the final swing-up angle (Fig. 3). The
model is trained in a self-supervised learning fashion. The
data collection is introduced in Sec. IV. During the inference
mode, the robot first records the marker information of the
tilting and shaking actions. Then, the trained information
fusion model processes these inputs into a joint physical
feature. After that, a set of gripper widths are uniformly
sampled. The prediction model predicts the final swing-up
angle for each sampled gripper width and then selects the
one with the prediction result closest to the goal pose.

D. Template Objects and Dataset

When it comes to model generalization, the diversity of the
training conditions highly influences the models performance
on unseen objects. To this end, inspired by [28], we design

a modular system to quickly build a set of test objects.

Our object templates are shown in Fig 5. There are three
major components: handle, rack, and weight. They can be
assembled or replaced by simple rotational press-fit. The
goal is to change the object’s physical properties easily by
placing different weights in different positions and exchanging
handles.

With our template objects, we collect a dataset that contains
33 different objects and each object was used in 50 swing-up
trials, performed with a random control parameter. These
objects contain variance in different category of physical
proprieties:

o 3 different surface frictions on the handle: foam, slick

tape, and plastic.

o 3 disks with different mass: 3.7 g, 7.3 g and 14.5 g.

e a pole-shaped rack (15.6 g) allowing for different

placement of the disks for variance in center of mass
(77-134 mm) and moment of inertia (0.03-0.58 g - m?)

In each data collection trial, the robot first grasps the object
and holds it a O-degree pose. It then rotates its end effector
into two angles (20°, 45°in our experiments), as introduced
in Sec. III, and records the marker information from the
tactile sensor. After that, the robot resets the object pose to
0°and loosens the gripper force before it starts shaking as
introduced in Sec. III. The marker sequence is recorded. Then
the robot selects a random control parameter and starts its
swing up. The final angle in the end of the swing-up is saved
as the supervision ground truth for training the prediction
model. At the end of each data collection trial, the robot
opens the gripper and lets the object fall into a recycle box
at the bottom of the system. The recycle box will return
the object to the same initial position every time so that the
robot can automatically start another trial. The reset process
is demonstrated in our video supplementary files.

IV. EXPERIMENTS

In the experimental section, we would like to answer the
following questions: (1) How does the prediction model with
the learned physical features compare to the one without
physical exploration? (2) How does the fusion of the multiple
exploration actions compare to each individual action? (3)
Can the physical properties of an object be regressed from the

learned features? (4) Are objects with similar dynamics close
in the embedding space? (5) Can our method accurately swing-
up a set of unknown objects to a desired poses consistently?

To answer these questions, we evaluate our method on
both seen and unseen objects with a 5-DoF robot arm.
Here, “unseen” refers to objects with physical proprieties
that never appeared in the training set. To assess what
information is included in the learned physical feature
embedding, we conduct a experiment to directly regress
the physical proprieties (friction, mass, center of mass and
moment of inertia) from the physical embedding on both
seen and unseen objects.

A. Experimental Setup

Dataset for seen objects: We collected data with 33 objects
with different physical properties as introduced in Sec. III.
For the experiments on “seen” objects, we split the data of
each object into 90% for training and 10% for evaluation.
Thus, the training set contains 1485 samples (33 objects) and
the testing set consists of 165 trials (33 objects).

Dataset for unseen objects: For the “unseen” objects, we
split the 33 objects into 27 objects for training and 6 objects
(showed in Table. III) for testing. The testing set is composed
of a combination of 2 different frictions and two different
masses placed at 2 different locations. The training set
contains 1350 samples and the testing set consists of 300
trials.

Architectures: We compare five model variants that show
case the effectiveness of our design choices:

e None: No tactile exploration information is given. The
model takes the action as input and directly predicts the
final swing-up angle.

e PP: The numerical value of each physical property
(friction, mass, center of mass and moment of inertia)
of the object is given to the model as inputs.

o Tilting: The model only process the tactile information
of the tilting action into the physical features.

o Shaking: The model only process the tactile information
of the shaking action into the physical features.

o Combined: Both tactile information of tilting and shaking
actions are processed by the fusion model into a joint
physical feature embedding.

Robot experiment setup: As shown in Fig. 6, we use a
5-DoF robot arm (ReactorX 150 Robot Arm, Interbotix)
for our experiments. For better performance, we replace
all the servo motors with DYNAMIXEL XM-430-W350T,
ROBOTIS. We use OpenCM9.04 C micro-controller for
controlling the robot. In order to get consistent performance,
we found that it was critical to send the trajectory to micro-
controller buffer in advance and execute on board. Otherwise,
the communication latency between PC and micro-controller
can produce prohibitively large amounts of actuation noise.

B. Model Performance

Table. I shows the evaluation results of five of our model
variants on both seen and unseen datasets. The metric is the
error in degrees on the final angle prediction results. Since the
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Fig. 6: Experiment setup. The GelSight tactile sensor is mounted on
a gripper of the robot arm. The recycling system enables automatic
data collection.

Rand. | None | PP | Tilt. | Shak. | Comb.
Seen 66.7 254 | 11.0 | 13.3 | 109 10.2
Unseen | 66.7 26.8 | 18.5 | 17.6 | 15.0 12.9

TABLE I: Quantitative evaluation results of the prediction model
with physical embedding from different variants of the fusion model
on seen and unseen datasets.

baseline method None does not have any information about
the physical proprieties of the object, it could only output
a mean value of the training dataset, showcasing the worst
performance. On the other hand, the Combined method which
uses the fusion model to combine the information from both
exploration actions achieves the best results, which surpass the
None for more than 13°on both datasets. This improvement
shows the importance of in-hand physical exploration for
dynamic manipulation tasks like swing-up.

Also, the Tilting, Shaking and Combined methods outper-
forms the PP baseline method by up to 5 degrees. This is
due to the components of the ground truth information being
based on the ideal physical model, which has the risk of
missing other physical features that also contribute to the
model performance such as the elasticity of the contact area
of the gripper and the pose of the object in-hand. Since the
GelSight tactile sensor provides rich contact information on
the finger tip, methods relying on this information have the
potential to learn their own joint physical understanding about
the held object and the system. These results showcase the
advantage of using an intuitive physics reasoning compared
to manually engineering physical features.

In the ablation study between Tilting, Shaking and Com-
bined, the performance of the methods with individual explo-
ration action is inferior to the combined version, especially
for the unseen situation. Hence, we conducted an additional
experiment to evaluate what information is learned in each
exploration action and why the combined version could
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Fig. 7: Task-oriented physical feature visualization: (a) Visual-
ization (with PCA) of the outputted physical embedding (Combined)
on the testing samples of the 6 unseen objects (listed in Table. III).
(b) Visualization of the data distribution (X-axis: control parameter;
Y-axis: final angle) of the testing samples of each object. Each color
point refers to one data sample. Objects with similar dynamics are
also close to each other on the learned physical embedding space
(e.g. 5 and 6). And objects with different dynamics are far away
from each other (e.g. 1 and 4).

achieve the best performance.

C. Physical Feature Disentanglement

We use a three-layer MLP as a disentangle network which
takes the physical feature embedding as input and regresses to
the numerical values of mass, center of mass and moment of
inertia. Another branch of the network outputs a classification
result for the friction (3 classes). The training and testing
data for both seen and unseen situations follow the same
setting as the prediction model. The weights of the network
that generates the physical embedding are fixed and only
the disentangle network is trained and tested. In addition to
the model variants introduced previously, we add another
End-to-End method which trains the whole pipeline to output
the physical properties. This method can be regarded as the
best performance that the model can reach.

Table. II shows the experimental results of the physical
feature disentanglement. The metric of the friction is the
classification success rate. The metric for the rest of the
physical properties is the error in percentage, where each
property is normalized to 0-1 based on the minimum and
maximum value. For both seen and unseen situation, all the
model variants outperform the Random baseline, which proves
that all of the physical properties are included in the learned
embedding.

In addition, we can observe from the results the difference
in focus between each of the exploration actions. For instance,
the tilting action is good at reasoning the mass and center of
mass, which surpasses the shaking for 8% in mass and 4% in
center of mass on the unseen situation. This is mainly because
the tilting action provides stable torque force signal by placing
the held object at different angles, for which is easier to
calculate these properties compared to shaking. On the other
hand, the shaking action achieves 93.9% friction classification
success rate which is higher than tilting action by 15%. This
is to the fact that, as opposed to tilting when the object is
held firmly, shaking loosens the gripper to enable in-hand
sliding of the object, capturing friction information. Because
of the loosening if the gripper, shaking failed to acquire the
mass and center of mass information, which requires stable



Seen Unseen
Friction | Mass | Cent. of Mass | Mom. of Iner. | Friction | Mass | Cent. of Mass | Mom. of Iner.
Random 33.3% | 0.333 0.333 0.333 33.3% | 0.333 0.333 0.333
Tilting 89.6% | 0.101 0.150 0.090 75.6% | 0.184 0.086 0.141
Shaking 96.9% | 0.121 0.203 0.184 90.1% | 0.263 0.125 0.233
Combined 94.8% | 0.085 0.135 0.112 93.9% | 0.200 0.099 0.117
End-to-End | 98.9% | 0.078 0.083 0.056 954% | 0.073 0.110 0.095

TABLE II: Quantitative evaluation results of the physical feature disentanglement on both seen and unseen datasets. The metric for the
friction is classification success rate (3 classes). The metric for the rest properties is error in percentage (normalized to 0-1 with the

minimum and maximum of the value).

ID Objects Errors | ID Objects Errors
1 Pst— | 214 | 2 | e——— | |73
3 = | 198 | 4 | l——t= | 33
5 proeet= | 183 | 6 | e | 234
Mean 17.2

TABLE III: Swing-up results on 6 unseen testing objects (with ID
1-6 same as Fig. 7). The robot uniformly samples a set of actions
and selects the one with the prediction result closest to the final
goal to perform the task. In this table, each object is tested 20 trials
(5 trials for each desired angle: 45°, 90°, 135°and 180°) and the
mean error is listed.

observations. It is surprising to find that the moment of inertia
of the tilting also outperforms the shaking. One of the possible
reasons for this is the model inferring the moment of inertia
based on its understanding of mass and center of mass. The
combined method successfully fuses the information from
both actions and achieved a balanced performance among all
the physical properties. This experiments show the importance
of fusing multiple exploration actions and why the combined
method could reach the best prediction results.

D. Task-oriented Physical Feature

Another advantage of learning joint physical features
compared to estimating each property individually is its
potential to generate task-oriented feature embeddings, where
the objects close to each other in the embedding space can
share similar control policies. We use PCA [29] to project
the learned physical embeddings from the Combined method
to points on a 2D plot and visualize all the testing results of
the 6 unseen testing objects in Fig. 7(a). We also visualize
the data distribution of these test samples in Fig. 7(b), where
the X-axis refers to the control parameter and the Y-axis is
the final swing-up angle. As we can see, for objects with
similar policy distribution (objects 5 and 6), the distance
between their embedding is also short. And for objects with
large differences in the policy distribution (objects 1 and 4),
the distance between their embedding is large. This result
confirms that the learned physical embeddings are indeed
task-oriented, which largely benefits the dynamic swing-up
manipulation.

E. Swing-up Results

We deploy the trained model of the Combine method in the
robot arm. Given the target angle, the robot samples different

control parameters, and chooses the one whose prediction
is closest to the target angle. We test 20 times (5 times
each for 45, 90, 135, 180 degrees as target angle) for each
unseen object. The robot is able to adapt the control policy
automatically for objects with different physical properties.
The evaluation shows that the model performs better on lighter
objects which have less uncertainty compared to heavier
objects. The detailed results are shown in Table. III.

V. DISCUSSION AND FUTURE WORK

We have presented SwingBot, a robot system that identifies
physical features of held objects from tactile exploration,
providing crucial information for a dynamic swing-up ma-
nipulation. SwingBot is based on a novel multi-action fusion
network that combines the information acquired via multiple
exploration actions into a joint embedding space. The whole
pipeline is trained in an end-to-end self-supervised manner.
We used the performance of the swing-up task to compare
our embedding with variants trained with single actions and
with swing-up actions that do not consider any form of
tactile information. These comparisons showed that swing-up
actions that relied on our fusion method achieved the best
performances. Furthermore, we showed that the learned task-
oriented feature embedding could also be used to successfully
regress individual physical properties such as mass, center of
mass, moment of inertia and friction.

Current limitations are inherently coupled to the fact that
our analysis of the embedding is based on the performance of
a single task. This task is very specific and heavily conditioned
by the available hardware. The robot platform that was used
suffers from high actuation noise increasing the error of the
swing-up angle predictions.

In addition, while the GelSight sensors provide very
rich information, the current sensing latencies prevent the
observation of the full swing-up movement. Using a more
robust robotic system in conjunction with a GelSight sensor
with lower latencies would potentially enable the use of real
time feedback control as opposed to the open loop solution
that was proposed.

Regarding future work, one interesting direction is to
learn the optimal exploration actions by using the quality
of the resulting embeddings to guide the learning. Another
interesting direction is to assess how useful these embeddings
are for other task and if an embedding learn for one task can
be transferred onto other tasks.
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